如何在一周内上线50个用户增长策略(TOP100直击)
为了能更好地做好用户增长,在今年年初时,我们在用户增长下做了多个实验,希望提高用户停留时长。用户浏览时间越长,就越有可能发现闲鱼上还有很多有趣的内容,无论是商品宝贝还是鱼塘内的帖子。从而达到吸引用户下一次还能再回来的目的,最终带来用户增长。其中两个实验如下:
我们做的实验上线后大部分都取得了不错的业务效果,但是在过程中也暴露了两个问题:
工程化解法——基于事件流的规则引擎
针对上述问题,我们先做了一层业务抽象。运营先通过对用户的各种行为进行一个分析和归类,得出一个共同的具体的规则,再将这个规则实时地作用到用户身上进行干预。
针对这层业务抽象,我们再做了工程化,目的就是为了提升研发效率和运营效率。这样就有了第一个方案——基于事件流的规则引擎,我们认为用户的行为是一串顺序的行为事件流,使用一段简单的事件描述DSL,再结合输入和输出的定义,就可以完整地定义一个规则。
以上述用户增长的第二个实验为例,如下图所示的DSL即可简单表达出来:
规则引擎的局限性
该规则引擎可以很好地解决之前用户增长业务下的几个策略,随后我们进行了内部推广,准备在闲鱼C2C安全业务下也落地。在C2C安全业务上有如下描述:
在C2C安全业务上,也有一个看似是一个针对一系列行为作出的规则抽象,如下图所示:
但是将上述规则套上规则引擎后,就会发现无法将安全的规则套上规则引擎。假设我们的详细规则是1分钟内被拉黑2次,就对该用户打上高危标记。那么我们想一想,当来了第一个拉黑事件后,匹配上了。然后紧接着来了第二个拉黑事件,也匹配上了。此时按照规则引擎的视角,条件已经满足了,可以进行下一步操作了。但是再仔细看一看规则,我们的规则是要被不同的用户拉黑,因为有可能是同一个用户操作了多次拉黑(同时多开设备)。而规则引擎上只知道匹配到了2次拉黑事件,对规则引擎来说已经满足了。却无法知道是否是不同人操作的。其根本原因是因为在规则引擎里,事件都是无状态的,无法回溯去做聚合计算。
新的解决方案
针对规则引擎的局限性,重新分析和梳理了我们的实际业务场景。并结合了业界知名的通用的解决方案后,设计出了新的方案,定义了新的DSL。可以看到,我们的语法是类SQL的,主要有以下几个考虑:
新的DSL方案与之前的规则引擎相比主要有以下几个增强:
针对之前的C2C业务上的规则描述问题,使用新方案的例子如下:
整体分层架构
基于这套用EPL(Event ProgramminLanguage)写出的DSL,为了做好工程化,我们做了如下的整体分层架构。为了快速实现最小闭环验证效果,我们选择先基于Blink(Blink是阿里对Flink的内部优化和升级)做云上的解析和计算引擎。
在这个分层架构里,至上而下分别是:
Copyright ©2015~2025 www.kingtall.com 网站ICP备案号:粤ICP备14001765号-1